Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652092

ABSTRACT

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Subject(s)
Extracellular Vesicles , Heart Transplantation , Macrophages , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Rats , Macrophages/metabolism , Male , Heart Transplantation/methods , Glucose/metabolism , Myocardium/metabolism , Disease Models, Animal , Recovery of Function , Glycolysis , Heart/physiopathology , Heart/physiology
2.
J Transl Med ; 21(1): 313, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161563

ABSTRACT

BACKGROUND: Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS: Exosomes from low-dose SFN (3 µM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS: Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS: Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.


Subject(s)
Exosomes , Myocytes, Cardiac , Male , Rats , Mice , Animals , Angiotensin II , Rats, Wistar , Fibroblasts , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Antibodies
4.
Vascul Pharmacol ; 145: 106999, 2022 08.
Article in English | MEDLINE | ID: mdl-35597450

ABSTRACT

Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Biomarkers/metabolism , COVID-19/diagnosis , Extracellular Vesicles/metabolism , Humans , Reproducibility of Results , Risk Assessment/methods , SARS-CoV-2 , Thromboplastin/metabolism
6.
EBioMedicine ; 67: 103369, 2021 May.
Article in English | MEDLINE | ID: mdl-33971404

ABSTRACT

BACKGROUND: Coronavirus-2 (SARS-CoV-2) infection causes an acute respiratory syndrome accompanied by multi-organ damage that implicates a prothrombotic state leading to widespread microvascular clots. The causes of such coagulation abnormalities are unknown. The receptor tissue factor, also known as CD142, is often associated with cell-released extracellular vesicles (EV). In this study, we aimed to characterize surface antigens profile of circulating EV in COVID-19 patients and their potential implication as procoagulant agents. METHODS: We analyzed serum-derived EV from 67 participants who underwent nasopharyngeal swabs molecular test for suspected SARS-CoV-2 infection (34 positives and 33 negatives) and from 16 healthy controls (HC), as referral. A sub-analysis was performed on subjects who developed pneumonia (n = 28). Serum-derived EV were characterized for their surface antigen profile and tested for their procoagulant activity. A validation experiment was performed pre-treating EV with anti-CD142 antibody or with recombinant FVIIa. Serum TNF-α levels were measured by ELISA. FINDINGS: Profiling of EV antigens revealed a surface marker signature that defines circulating EV in COVID-19. A combination of seven surface molecules (CD49e, CD209, CD86, CD133/1, CD69, CD142, and CD20) clustered COVID (+) versus COVID (-) patients and HC. CD142 showed the highest discriminating performance at both multivariate models and ROC curve analysis. Noteworthy, we found that CD142 exposed onto surface of EV was biologically active. CD142 activity was higher in COVID (+) patients and correlated with TNF-α serum levels. INTERPRETATION: In SARS-CoV-2 infection the systemic inflammatory response results in cell-release of substantial amounts of procoagulant EV that may act as clotting initiation agents, contributing to disease severity. FUNDING: Cardiocentro Ticino Institute, Ente ospedaliero Cantonale, Lugano-Switzerland.


Subject(s)
COVID-19/complications , Extracellular Vesicles/immunology , Thromboplastin/metabolism , Thrombosis/blood , Adult , Aged , Aged, 80 and over , Antigens, Surface/analysis , Biomarkers/analysis , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Switzerland , Thrombosis/etiology , Thrombosis/immunology , Tumor Necrosis Factor-alpha/blood
7.
Front Physiol ; 12: 658790, 2021.
Article in English | MEDLINE | ID: mdl-33897465

ABSTRACT

BACKGROUND: Combined treatment with anthracyclines (e.g., doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2) antibody, in patients with HER2-positive cancer is limited by cardiotoxicity, as manifested by contractile dysfunction and arrhythmia. The respective roles of the two agents in the cardiotoxicity of the combined therapy are incompletely understood. OBJECTIVE: To assess cardiac performance, T-tubule organization, electrophysiological changes and intracellular Ca2+ handling in cardiac myocytes (CMs) using an in vivo rat model of Dox/Trz-related cardiotoxicity. METHODS AND RESULTS: Adult rats received 6 doses of either Dox or Trz, or the two agents sequentially. Dox-mediated left ventricular (LV) dysfunction was aggravated by Trz administration. Dox treatment, but not Trz, induced T-tubule disarray. Moreover, Dox, but not Trz monotherapy, induced prolonged action potential duration (APD), increased incidence of delayed afterdepolarizations (DADs) and beat-to-beat variability of repolarization (BVR), and slower Ca2+ transient decay. Although APD, DADs, BVR and Ca2+ transient decay recovered over time after the cessation of Dox treatment, subsequent Trz administration exacerbated these abnormalities. Trz, but not Dox, reduced Ca2+ transient amplitude and SR Ca2+ content, although only Dox treatment was associated with SERCA downregulation. Finally, Dox treatment increased Ca2+ spark frequency, resting Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and long-lasting Ca2+ release events (so-called Ca2+ "embers"), partially reproduced by Trz treatment. CONCLUSION: These results suggest that in vivo Dox but not Trz administration causes T-tubule disarray and pronounced changes in electrical activity of CMs. While adaptive changes may account for normal AP shape and reduced DADs late after Dox administration, subsequent Trz administration interferes with such adaptive changes. Intracellular Ca2+ handling was differently affected by Dox and Trz treatment, leading to SR instability in both cases. These findings illustrate the specific roles of Dox and Trz, and their interactions in cardiotoxicity and arrhythmogenicity.

8.
J Heart Lung Transplant ; 39(10): 1136-1148, 2020 10.
Article in English | MEDLINE | ID: mdl-32665078

ABSTRACT

BACKGROUND: Circulating extracellular vesicles (EVs) are raising considerable interest as a non-invasive diagnostic tool, as they are easily detectable in biologic fluids and contain a specific set of nucleic acids, proteins, and lipids reflecting pathophysiologic conditions. We aimed to investigate differences in plasma-derived EV surface protein profiles as a biomarker to be used in combination with endomyocardial biopsies (EMBs) for the diagnosis of allograft rejection. METHODS: Plasma was collected from 90 patients (53 training cohort, 37 validation cohort) before EMB. EV concentration was assessed by nanoparticle tracking analysis. EV surface antigens were measured using a multiplex flow cytometry assay composed of 37 fluorescently labeled capture bead populations coated with specific antibodies directed against respective EV surface epitopes. RESULTS: The concentration of EVs was significantly increased and their diameter decreased in patients undergoing rejection as compared with negative ones. The trend was highly significant for both antibody-mediated rejection and acute cellular rejection (p < 0.001). Among EV surface markers, CD3, CD2, ROR1, SSEA-4, human leukocyte antigen (HLA)-I, and CD41b were identified as discriminants between controls and acute cellular rejection, whereas HLA-II, CD326, CD19, CD25, CD20, ROR1, SSEA-4, HLA-I, and CD41b discriminated controls from patients with antibody-mediated rejection. Receiver operating characteristics curves confirmed a reliable diagnostic performance for each single marker (area under the curve range, 0.727-0.939). According to differential EV-marker expression, a diagnostic model was built and validated in an external cohort of patients. Our model was able to distinguish patients undergoing rejection from those without rejection. The accuracy at validation in an independent external cohort reached 86.5%. Its application for patient management has the potential to reduce the number of EMBs. Further studies in a higher number of patients are required to validate this approach for clinical purposes. CONCLUSIONS: Circulating EVs are highly promising as a new tool to characterize cardiac allograft rejection and to be complementary to EMB monitoring.


Subject(s)
Extracellular Vesicles/metabolism , Graft Rejection/blood , Heart Transplantation/adverse effects , Adult , Aged , Allografts , Biomarkers/blood , Biopsy , Female , Flow Cytometry , Graft Rejection/diagnosis , Humans , Male , Middle Aged , ROC Curve
9.
Theranostics ; 10(6): 2773-2790, 2020.
Article in English | MEDLINE | ID: mdl-32194834

ABSTRACT

Background: After myocardial infarction, necrotic cardiomyocytes release damage-associated proteins that stimulate innate immune pathways and macrophage tissue infiltration, which drives inflammation and myocardial remodeling. Circulating inflammatory extracellular vesicles play a crucial role in the acute and chronic phases of ischemia, in terms of inflammatory progression. In this study, we hypothesize that the paracrine effect mediated by these vesicles induces direct cytotoxicity in cardiomyocytes. Thus, we examined whether reducing the generation of inflammatory vesicles within the first few hours after the ischemic event ameliorates cardiac outcome at short and long time points. Methods: Myocardial infarction was induced in rats that were previously injected intraperitoneally with a chemical inhibitor of extracellular-vesicle biogenesis. Heart global function was assessed by echocardiography performed at 7, 14 and 28 days after MI. Cardiac outcome was also evaluated by hemodynamic analysis at sacrifice. Cytotoxic effects of circulating EV were evaluated ex-vivo in a Langendorff, system by measuring the level of cardiac troponin I (cTnI) in the perfusate. Mechanisms undergoing cytotoxic effects of EV derived from pro-inflammatory macrophages (M1) were studied in-vitro in primary rat neonatal cardiomyocytes. Results: Inflammatory response following myocardial infarction dramatically increased the number of circulating extracellular vesicles carrying alarmins such as IL-1α, IL-1ß and Rantes. Reducing the boost in inflammatory vesicles during the acute phase of ischemia resulted in preserved left ventricular ejection fraction in vivo. Hemodynamic analysis confirmed functional recovery by displaying higher velocity of left ventricular relaxation and improved contractility. When added to the perfusate of isolated hearts, post-infarction circulating vesicles induced significantly more cell death in adult cardiomyocytes, as assessed by cTnI release, comparing to circulating vesicles isolated from healthy (non-infarcted) rats. In vitro inflammatory extracellular vesicles induce cell death by driving nuclear translocation of NF-κB into nuclei of cardiomyocytes. Conclusion: Our data suggest that targeting circulating extracellular vesicles during the acute phase of myocardial infarction may offer an effective therapeutic approach to preserve function of ischemic heart.


Subject(s)
Extracellular Vesicles , Inflammation , Myocardial Infarction , Myocardium , Toll-Like Receptor 4/metabolism , Animals , Animals, Newborn , Cells, Cultured , Cytokines/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac , NF-kappa B/metabolism , Rats , Rats, Wistar , Troponin I/metabolism
10.
Cardiovasc Res ; 116(2): 383-392, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31098627

ABSTRACT

AIMS: Combined administration of anthracyclines (e.g. doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2), is an effective treatment for HER2-positive breast cancer. However, both agents are associated with cardiac toxicity. Human cardiac-resident mesenchymal progenitor cells (CPCs) secrete extracellular vesicles including nanosized exosomes which protect against myocardial ischaemia. Here, we investigated the effects of these exosomes using a novel model of Dox/Trz-mediated cardiotoxicity. METHODS AND RESULTS: CPCs were derived from cardiac atrial appendage specimens from patients who underwent heart surgery for heart valve disease and/or ischaemic heart disease, and exosomes were purified from CPC conditioned media. Proteomics analyses revealed that CPC exosomes contained multiple proteins involved in redox processes. Dox/Trz induced a significant increase in reactive oxygen species (ROS) in rat cardiomyocytes, which was prevented by CPC exosomes. In vivo, rats received six doses of Dox (Days 1-11), followed by six doses of Trz (Days 19-28). Three doses of either exosomes or exosome suspension vehicle were injected intravenously on Days 5, 11, and 19 in the treatment and control groups, respectively. Dox/Trz induced myocardial fibrosis, CD68+ inflammatory cell infiltrates, inducible nitric oxide synthase expression, and left ventricular dysfunction. CPC exosomes prevented these effects. These vesicles were highly enriched in miR-146a-5p compared with human dermal fibroblast exosomes. Dox upregulated Traf6 and Mpo, two known miR-146a-5p target genes (which encode signalling mediators of inflammatory and cell death axes) in myocytes. CPC exosomes suppressed miR-146a-5p target genes Traf6, Smad4, Irak1, Nox4, and Mpo in Dox-treated cells. Specific silencing of miR-146a-5p abrogated exosome-mediated suppression of those genes leading to an increase in Dox-induced cell death. CONCLUSIONS: Human CPC exosomes attenuate Dox-/Trz-induced oxidative stress in cardiomyocytes. Systemic administration of these vesicles prevents Dox/Trz cardiotoxicity in vivo. miR-146a-5p mediates some of the benefits of exosomes in this setting.


Subject(s)
Cardiomyopathies/prevention & control , Doxorubicin , Exosomes/transplantation , Mesenchymal Stem Cell Transplantation , Myocardium/pathology , Trastuzumab , Ventricular Dysfunction, Left/prevention & control , Administration, Intravenous , Aged , Animals , Animals, Newborn , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cells, Cultured , Disease Models, Animal , Exosomes/metabolism , Female , Fibrosis , Humans , Inflammation Mediators/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Myocardium/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , Ventricular Remodeling
11.
Int J Mol Sci ; 20(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678240

ABSTRACT

Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function after myocardial infarction in rats. Here, we explore a clinically relevant approach to enhance the homing process to cardiomyocytes (CM), which is crucial for therapeutic efficacy upon systemic delivery of Exo. By overexpressing exosomal CXCR4, we increased the efficacy of plasmatic injection of cardioprotective Exo-CPC by increasing their bioavailability to ischemic hearts. Intravenous injection of ExoCXCR4 significantly reduced infarct size and improved left ventricle ejection fraction at 4 weeks compared to ExoCTRL (p < 0.01). Hemodynamic measurements showed that ExoCXCR4 improved dp/dt min, as compared to ExoCTRL and PBS group. In vitro, ExoCXCR4 was more bioactive than ExoCTRL in preventing CM death. This in vitro effect was independent from SDF-1α, as shown by using AMD3100 as specific CXCR4 antagonist. We showed, for the first time, that systemic administration of Exo derived from CXCR4-overexpressing CPC improves heart function in a rat model of ischemia reperfusion injury These data represent a substantial step toward clinical application of Exo-based therapeutics in cardiovascular disease.


Subject(s)
Exosomes/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Receptors, CXCR4/metabolism , Animals , Benzylamines , Blotting, Western , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cryoelectron Microscopy , Cyclams , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Heterocyclic Compounds/therapeutic use , Humans , Male , Myocardial Infarction/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics
12.
Ann Clin Transl Neurol ; 5(11): 1394-1407, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30480033

ABSTRACT

OBJECTIVE: Autonomic nervous system is involved at the onset of Parkinson disease (PD), and alpha-synuclein (α-Syn) and its phosphorylated form (p-αSyn) have been detected in dermal autonomic nerve fibers of PD. We assessed disease specific conformation variant of α-Syn immunoreactivity in cutaneous nerves and characterized skin denervation patterns in PD and atypical parkinsonism (AP). METHODS: We enrolled 49 subjects, 19 with PD, 17 age-matched healthy controls, and 13 with AP. The manifestations of disease were rated on clinical scales. Skin biopsies from ankle, thigh, and neck were analyzed by immunofluorescence for p-αSyn, 5G4 as a conformation specific antibody to pathogenic α-Syn and PGP9.5 as axonal marker. Intraepidermal nerve fiber density was measured in all anatomical sites as marker of neurodegeneration. Thirteen of the 19 PD underwent a 1 year follow-up visit plus skin biopsies. RESULTS: PD subjects displayed more severe cervical skin denervation (P < 0.03), which correlated to disease duration and worsened between initial and follow-up examination (P < 0.001). p-αSyn and 5G4 were equally sensitive and specific for the diagnosis of PD (area under the ROC was 0.839 for p-αSyn and 0.886 for 5G4). PD and AP with possible alpha-synucleinopathies share the features of marked cervical denervation and the presence of 5G4. In contrast AP with possible tauopathies were normal. INTERPRETATION: Conformational specific forms of α-Syn are detectable in skin biopsy by immunofluorescence in PD, with a promising diagnostic efficiency similar to p-αSyn. Cervical cutaneous denervation correlates with disease duration and increases over time standing out as a potential biomarker of PD progression.

13.
Front Physiol ; 9: 1169, 2018.
Article in English | MEDLINE | ID: mdl-30197601

ABSTRACT

Exosomes, nanosized membrane vesicles secreted by cardiac progenitor cells (Exo-CPC), inhibit cardiomyocyte apoptosis under stress conditions, promote angiogenesis in vitro, and prevent the early decline in cardiac function after myocardial infarction in vivo in preclinical rat models. The recognition of exosome-mediated effects has moved attempts at developing cell-free approaches for cardiac repair. Such approaches offer major advantages including the fact that exosomes can be stored as ready-to-use agents and delivered to patients with acute coronary syndromes. The aim of the present work was the development of a good manufacturing practice (GMP)-grade method for the large-scale preparation of Exo-CPC as a medicinal product, for a future clinical translation. A GMP-compliant manufacturing method was set up, based on large-scale cell culture in xeno-free conditions, collection of up to 8 l of exosome-containing conditioned medium and isolation of Exo-CPC through tangential flow filtration. Quality control tests were developed and carried out to evaluate safety, identity, and potency of both cardiac progenitor cells (CPC) as cell source and Exo-CPC as final product (GMP-Exo-CPC). CPC, cultured in xeno-free conditions, showed a lower doubling-time than observed in research-grade condition, while producing exosomes with similar features. Cells showed the typical phenotype of mesenchymal progenitor cells (CD73/CD90/CD105 positive, CD14/CD20/CD34/CD45/HLA-DR negative), and expressed mesodermal (TBX5/TBX18) and cardiac-specific (GATA4/MESP1) transcription factors. Purified GMP-Exo-CPC showed the typical nanoparticle tracking analysis profile and expressed main exosome markers (CD9/CD63/CD81/TSG101). The GMP manufacturing method guaranteed high exosome yield (>1013 particles) and consistent removal (≥97%) of contaminating proteins. The resulting GMP-Exo-CPC were tested for safety, purity, identity, and potency in vitro, showing functional anti-apoptotic and pro-angiogenic activity. The therapeutic efficacy was validated in vivo in rats, where GMP-Exo-CPC ameliorated heart function after myocardial infarction. Our standardized production method and testing strategy for large-scale manufacturing of GMP-Exo-CPC open new perspectives for reliable human therapeutic applications for acute myocardial infarction syndrome and can be easily applied to other cell sources for different therapeutic areas.

14.
Cardiovasc Res ; 114(7): 992-1005, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29518183

ABSTRACT

Aims: Cell therapy trials using cardiac-resident progenitor cells (CPCs) and bone marrow-derived mesenchymal stem/progenitor cells (BMCs) in patients after myocardial infarction have provided encouraging results. Exosomes, nanosized extracellular vesicles of endosomal origin, figure prominently in the bioactivities of these cells. However, a head-to-head comparison of exosomes from the two cell types has not been performed yet. Methods and results: CPCs and BMCs were derived from cardiac atrial appendage specimens and sternal bone marrow, respectively, from patients (n = 20; age, 69.9 ± 10.9) undergoing heart surgery for aortic valve disease and/or coronary artery disease. Vesicles were purified from cell conditioned media by centrifugation/filtration and ultracentrifugation. Vesicle preparations were predominantly composed of exosomes based on particle size and marker expression (CD9, CD63, CD81, Alix, and TSG-101). CPC-secreted exosomes prevented staurosporine-induced cardiomyocyte apoptosis more effectively than BMC-secreted exosomes. In vivo, CPC-secreted exosomes reduced scar size and improved ventricular function after permanent coronary occlusion in rats more efficiently than BMC-secreted exosomes. Both types of exosomes stimulated blood vessel formation. CPC-secreted exosomes, but not BMC-derived exosomes, enhanced ventricular function after ischaemia/reperfusion. Proteomics profiling identified pregnancy-associated plasma protein-A (PAPP-A) as one of the most highly enriched proteins in CPC vs. BMC exosomes. The active form of PAPP-A was detected on CPC exosome surfaces. These vesicles released insulin-like growth factor-1 (IGF-1) via proteolytic cleavage of IGF-binding protein-4 (IGFBP-4), resulting in IGF-1 receptor activation, intracellular Akt and ERK1/2 phosphorylation, decreased caspase activation, and reduced cardiomyocyte apoptosis. PAPP-A knockdown prevented CPC exosome-mediated cardioprotection both in vitro and in vivo. Conclusion: These results suggest that CPC-secreted exosomes may be more cardioprotective than BMC-secreted exosomes, and that PAPP-A-mediated IGF-1 release may explain the benefit. They illustrate a general mechanism whereby exosomes may function via an active protease on their surface, which releases a ligand in proximity to the transmembrane receptor bound by the ligand.


Subject(s)
Exosomes/transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Ischemia/surgery , Myocardial Reperfusion Injury/surgery , Myocytes, Cardiac/transplantation , Pregnancy-Associated Plasma Protein-A/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Atrial Appendage/cytology , Cell Line , Culture Media, Conditioned/metabolism , Exosomes/metabolism , Female , Humans , Insulin-Like Growth Factor I/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Middle Aged , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Phenotype , Pregnancy-Associated Plasma Protein-A/genetics , Rats, Wistar , Recovery of Function , Signal Transduction , Ventricular Function, Left
15.
Europace ; 18(suppl 4): iv67-iv76, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28011833

ABSTRACT

AIM: Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na+ current (INa), nifedipine, a blocker of L-type Ca2+ current (ICaL), and E4031, a blocker of the rapid component of delayed rectifier K+ current (IKr). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K+ current (IKs). CONCLUSION: In hiPSC-derived cardiomyocytes of cardiac origin, INa, ICaL, IKr, and IKs were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic cell origins. Further studies are warranted to characterize electrophysiological properties of hiPSC-derived cardiomyocytes generated from CPCs.


Subject(s)
Calcium Channels, L-Type/drug effects , Cell Differentiation , Delayed Rectifier Potassium Channels/antagonists & inhibitors , Fibroblasts/drug effects , Induced Pluripotent Stem Cells/drug effects , Membrane Transport Modulators/pharmacology , Myocytes, Cardiac/drug effects , Sodium Channels/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cell Lineage , Cells, Cultured , Cellular Reprogramming , Delayed Rectifier Potassium Channels/metabolism , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Membrane Potentials , Myocytes, Cardiac/metabolism , Phenotype , Potassium Channel Blockers/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...